Na4IrO4: Singular manifestation of square-planar coordination of a transition metal in d configuration due to weak on-site Coulomb interaction

نویسندگان

  • Sudipta Kanungo
  • Binghai Yan
  • Patrick Merz
  • Claudia Felser
  • Martin Jansen
  • Rudolf Hoppe
چکیده

Local environments and valence electron counts primarily determine the electronic states and physical properties of transition metal complexes. For example, square-planar surroundings found in transition oxometalates such as curprates are usually associated with the d or d electron configuration. In this work, we address an exotic square-planar mono-oxoanion [IrO4] as observed in Na4IrO4 with Ir(IV) in d configuration, and characterize the chemical bonding by experiment and ab initio calculations. We find that Na4IrO4 in its ground state evolves a square-planar coordination for Ir(IV) because of the weak Coulomb repulsion of Ir-5d electrons. In contrast, in its 3d counterpart, Na4CoO4, Co(IV) is in tetrahedral coordination, due to strong electron correlation. Na4IrO4 thus may serve as a simple paradigmatic platform for studying the ramifications of Hubbard type Coulomb interactions on local

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordination and Siting of Cu+ Ion Adsorbed into Silicalite-2 Porous Structure: A Density Functional Theory Study

Coordination of Cu+ ions adsorbed on plausible sites of a silicalite-2 lattice has been investigated computationally via hybrid density functional theory method at the B3LYP/6-311+G* and B3LYP/Def2-TZVP levels of theory using molecular models of the active site. The symmetrical coordination of Cu+ ions to almost five oxygen atoms of the all-silica framework in six-membered ring (6MR) sites of t...

متن کامل

Investigation of electron correlation effects in armchair silicene nanoribbons

In this study, the electronic structure of armchair silicene nanoribbons (ASiNRs) is investigated for various widths using first-principle calculations and the framework of the density functional theory. Electronic structure of ASiNRs shows a direct band gap which is decreased  with increasing the nanoribbon's width, showing an oscillatory behavior. The effective Coulomb interaction between loca...

متن کامل

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

Strength of the effective Coulomb interaction at metal and insulator surfaces.

The effective on-site Coulomb interaction (Hubbard U) between localized electrons at crystal surfaces is expected to be enhanced due to the reduced coordination number and reduced subsequent screening. By means of first principles calculations employing the constrained random-phase approximation we show that this is indeed the case for simple metals and insulators but not necessarily for transi...

متن کامل

Dissymmetric dinuclear transition metal complexes as dual site catalysts for the polymerization of ethylene

A series of dissymmetric dinuclear complexes were synthesized, as dual site catalysts in ethylene polymerization, by coupling the allylated a-diimine complexes of the metals Ti, Zr, V, Ni and Pd with the ansa-zirconocene complex [C5H4-SiH(Me)-C5H4]ZrCl2 possessing a hydride silane moiety. The different stages of syntheses included the formation of bis(cyclopentadienide)methyl silane which was u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015